
Compiled Analysis on Blockchain Security

Mustafa Aljadery mustafa@mustafaaljadery.com
Independent Researcher

Abstract

Participants of a distributed ledger receive confirma-
tion that the cryptographic chain in their funds are
stored is secure and invulnerable to attacks. While
the infrastructure of a blockchain is specifically de-
signed for security and decentralization, all systems
are prone to attacks. In this paper, I have compiled
most of the literature on large-scale attacks on the
blockchain that may be able to compromise security.
Attacks on the blockchain are broken into two parts:
1) Fundamental vulnerabilities in the blockchain in
which the entire blockchain may be compromised.

2) Vulnerabilities in smart contract code on the
usage of the blockchain. These errors are made by de-
velopers utilizing the infrastructure of the blockchain.

Blockchain Attacks are many times more common
on the surface level at which developers produce code
than attacks on the fundamental infrastructure of the
blockchain. Blockchains are specifically designed so
that democracy is fundamental in all instances, this
secure design is a necessity for any financial asset.
However, largest-scale exploits are still possible. I
present most of the known attacks on blockchain in-
frastructure and attacks on surface-level execution on
the blockchain.

1 Fundamentals

To understand vulnerability in blockchains, we first
must understand how a blockchain works. A
blockchain by itself is just a database, similar to SQL.
This database is shared among all of the nodes in the
blockchain. Different from a SQL database, data in
the blockchain is organized into compartments called
blocks. Each block has a certain capacity in terms
of memory. Each block, once capacity is reached, is
closed and all new information will be put in the sub-
sequent block. Since data is stored in blocks and once
the blocks are full they are closed, the data is irre-
versible in the blockchain. This design is chosen for a

distributed ledger because of its security. Blockchains
guarantee trust in the availability of the data, and
with the help of consensus and other mechanisms,
decentralization and security.
Cryptocurrencies such as Ethereum and Bitcoin rely
on a consensus mechanism to further secure the pro-
tocol from malicious actors. The consensus mecha-
nism saw a big revolution in the Bitcoin whitepaper
where the concept of Nakamoto Consensus was intro-
duced. Fundamentally, Nakamoto consensus is a set
of rules to ensure all participants of a blockchain are
behaving correctly. However, the interesting feature
in Nakamoto Consensus that was not present in con-
temporary Byzantine Fault Tolerant systems, is con-
sensus without a leader. In Nakamoto Consensus,
no leader initiates consensus, every participant has
an equal say. Decentralization is the key optimiza-
tion here, you would not need to rely on a central
authority to initiate consensus. Nakamoto consensus
does have vulnerabilities and more efficient consensus
mechanisms have been proposed, these are going to
be explained in this paper.
A smart contract is a contract that runs on the
blockchain. It is similar to any other contract in
which a settlement is decided between two parties.
Important features of smart contracts include rapid
execution of an agreement on a blockchain and im-
mediate certainty of an outcome. The three major
benefits of a smart contract are the accuracy a smart
contract entails, singularity of a decision (a smart
contract can’t give you two outcomes in the same
dispute, centralized parties can), and cost-efficiency
of execution. Although smart contracts are secured
by the fundamental infrastructure of the blockchain,
smart contracts allow developers to write the con-
tracts. Since code is written and then executed on
the blockchain, numerous exploits may be present in
the form of bugs that the developer did not intend. In
this paper, I am going to identify common mistakes
in writing smart contracts.

1



In addition to attacks in the fundamental infrastruc-
ture of the blockchain and attacks on poorly written
smart contract code, in this paper, I am going to
identify social engineering attacks that participants
of the blockchain are prone to.

2 Sybil Attacks

Sybil attacks occur when malicious actors create
multiple identities to bypass verification. Current
proof-of-work protocols, which include Bitcoin and
Ethereum, require all nodes on the protocol to pro-
vide computational power to prevent malicious ac-
tors. Without a proof mechanism, participants of the
network are vulnerable to attacks. The proof-of-work
protocol iterators a hashing algorithm until the round
ends. The randomness of the miner that is chosen in
the next round is proportional to the work done by
that miner.
Most blockchain protocols are prone to the majority-
of-network attack. For example, if an entity in the
proof-of-work protocol has the majority of the com-
putational power, it can bypass consensus. Consen-
sus is just voting, and if you have the majority of the
voting, you can vote on what benefits you, leaving
other participants of the blockchain vulnerable. This
is known as the 51 percent attack. The 51 percent
attack is not only found in proof-of-work protocols
but proof-of-stake protocols. In a proof-of-stake pro-
tocol, the underlying financial asset of the blockchain
is reserved and if there are any malicious actors, the
protocol takes their reserved (staked) assets. Proof-
of-stake protocols are also vulnerable to 51 percent
attacks, if an entity controls 51 percent of the under-
lying protocol financial assets, they take consensus
into their own hands and effectively control the exe-
cution mechanism.
An adaptation of the proof-of-stake protocol with an
entirely new solution to the Byzantine Fault Tol-
erance problem is Snow Consensus. Snow consen-
sus was first proposed by an anonymous team called
Team Rocket in 2018, which detailed a consensus
mechanism that was both more secure and reached
faster consensus than contemporary proof-of-stake
and proof-of-work protocols. Snow consensus enables
the fastest finality in blocks as of current technol-
ogy. The concept of snow consensus lies in the idea
of metastability. Decisions in snow consensus are not
stable, the more information that is added, the more
decisions can change. This is different from for ex-
ample Bitcoin which has a single decision. This type
of consensus is of higher security as you need to gain
81 percent of the network in order to overthrow the

consensus protocol. Although this is a lot more se-
cure for the end-users of the blockchain, it is a lot
less decentralized. Viewers of the mempool need to
stake orders of magnitude larger in order to view the
mempool.
Prevention of a Sybil attack is impossible as this is
the fundamental structure of a consensus mechanism,
however, as more participants are available in the
blockchain, the more decentralized it becomes and
harder for a malicious attacker to gain control of the
chain. In the proof-of-work example, the more miners
there are in the network, the harder it is for one indi-
vidual to gain control of the majority of the mining
power. Such high hash power is an expensive task.
In proof-of-stake, the more participants there are in a
blockchain, the harder it is for one individual to own
the majority of the financial assets.

3 Denial of Service Attack

A distributed denial-of-service attack (DDoS Attack)
is an attack in which a malicious attacker sends so
much traffic to a server that the server goes offline.
Specifically, the network resources of a machine go of-
fline. Although the architecture of a blockchain cou-
pled with a consensus mechanism makes it difficult for
a blockchain to go offline, certain DDoS attacks can
still impact the blockchain. The biggest DDoS attack
that blockchains are prone to is transaction flooding.
A transaction flood is when a malicious attacker sends
so many transactions to the blockchain that numer-
ous blocks get filled. Since many of the blocks are
filled before they are executed, other transactions in
the blockchain take many orders of magnitude more

2



time to confirm, slowing down the experience of all
other users.
An example of a large DDoS attack is the Solana net-
work DDoS Attack. The Solana network experienced
traffic of approximately 400,000 transactions per sec-
ond at the time of the launch of a new project on the
network. Since no block can handle 400,000 trans-
actions, transactions were sent to subsequent blocks.
Sending transactions to subsequent blocks was not
the problem, but since the architecture of Solana is
that blocks are massive compared to other decentral-
ized blockchains, validators were not able to handle
processing such large blocks. Many of the validators
ran out of memory. This resulted in a hard fork of
the blockchain, as the network went down from lack
of memory in the validators.
Another attack on the blockchain included a layer 2
attack. Arbitrum is a layer 2 scaling solution which
is similar to the architecture of validators, send all
transactions that don’t fit in the unit of execution
to the next one. A DDoS flood attack was executed
in 2021 that the system was overflooded with trans-
actions that the protocol could not accept any more
transactions. The system went offline for over 45 min-
utes.
One of the best ways to deal with DDoS attacks
is stress-testing the infrastructure before mainnet
launch. If the infrastructure is tested for processing
potential memory issues, then the risk of a valida-
tor going offline is a lot less. Furthermore, a filtering
system may be useful in such attacks as well.

4 Social Engineering Attacks

Social engineering attacks come in many different
forms and they can be characterized as attacks on the
surface layer of the blockchain. These types of attacks

are not fundamental errors in the blockchain but
rather errors in the way participants in the blockchain
use the blockchain. In simple terms, social engi-
neering is the method of manipulating other partic-
ipants in the blockchain to release private informa-
tion or perform unintended actions. Malicious at-
tackers trick people into doing something at is unin-
tended. To a certain extent, these types of exploits
are unavoidable as many of the participants in the
blockchain are not educated about the infrastructure.
The most common social engineering attack is the
release of blockchain private keys. A private key is
used to secure your assets on the blockchain. Each
account on the blockchain has a private key and any-
one with access to that private key has access to all of
the funds in the account. A common way that social
engineering hackers attack other individuals is they
pose as a trusted identity and manipulate the sup-
porters/users of that trusted identity to send them
their private keys. Once unsuspecting supports send
private keys, all the money in their account is sent to
the account of the malicious attacker and the funds
can not be retrieved.
Attacks like these result in billions of dollars in losses
in both centralized and decentralized entities. The
most common way to defend against such attacks is
to understand the different types of social engineer-
ing attacks and to understand the fundamentals of
the blockchain. Before entering any website, always
check that the link is from a trusted entity. Further-
more, never input your private key no matter where it
is asked. The idea of a private key is there to protect
your funds, all transactions can be done without the
input of a private key. Always make sure you have
the right information when dealing with cryptocur-
rency projects.

3



5 Authentication Routing

Authentication routing or more commonly known as
wifi packet injection is a middleman attack. The
blockchain itself is connected to the internet, and to
interact with the blockchain, users must use the inter-
net. Authentication attacks work when a malicious
attacker modifies the behavior of the intended action
from your device and the internet. For example, on
your device you may intend to send a certain number
of financial assets to one account, however, the ma-
licious attacker will manipulate the request to send
the assets to his account. This type of attack can be
taken to a much bigger scale than it can disrupt the
entire blockchain.
The key aspect here is that many of the nodes that
run the biggest blockchains today are housed in cen-
tralized entities. The biggest centralized entities that
the large majority of the blockchain runs on are ISPs.
A routing attack or more commonly known as IP hi-
jacking is when a group of IP addresses is corrupted
in the Border Gateway Protocol. Through this type
of routing attack, you can partition the chain into
multiple components. Such an attack will invalidate
a huge number of transactions. Furthermore, it can
slow down the entire network. The block delivery can
be manipulated to take many times more time than
it usually does.
The solution to such an attack is protecting connec-
tions. If the connections are protected from the ISP’s
then this attack is less frequent. Such a problem is
less about the participants of the blockchain, how
blockchains are built, but what they are built upon.
Moreover, with all of the attacks outlined, many
could be coupled into one to create a massive breach
in the blockchain. For example, a routing attack that
exploits nodes may make it easier for a 51 percent
attack as fewer nodes are participating in consensus.
One single attack is too expensive to perform, but
many coupled together are dangerous to a blockchain.

6 Smart Contract Attacks

Most of the attacks on smart contracts are labeled
as surface-level attacks. Surface-level attacks are at-
tacks that are present because of bad practices within
the participants of the blockchain rather than the
infrastructure of the blockchain. Very commonly,
surface-level attacks are done on smart contracts.
The biggest was THE DAO reentrancy attack which
caused a hard fork in the Ethereum blockchain. I am
going to identify the most common smart contract
attacks.

6.1 Reentrancy Attack

The reentrancy attack is to be thought of as a false
state attack. In poorly written smart contracts, a
function can be called continuously without the first
call ending. Such an attack would be a large problem
as you are still using the previous state. The state
only updates when the function ends, the function
has not ended yet meaning you can exploit the state.
Furthermore, the reentrancy attack is not only bound
to multiple executions of a single function but rather
multiple functions may be vulnerable to an invalid
state.
The biggest attack on the Ethereum blockchain was
a simple reentrancy attack. The attack was so big
that the community decided to initiate a hard fork in
order to retrieve the funds of the victims. The DAO
was hacked because of an error in the smart contract
in which Ethereum’s fallback function was exploited.
Recursive calls were performed on the function, and
all funds were sent to the attacker’s wallet.
The only solution to such an attack is that all state
changes must first be done inside of a smart contract
before external capabilities are called. Then there
would be no invalid state and a reentrancy attack
would not occur. In the example of the DAO, if all
internal states would have updated before the trans-
fer of the ether then the attack would not have been
valid.

6.2 Frontrunning Attacks

Frontrunning is the term used for when members of
a network gain an advantage in terms of execution
time. All transactions in the blockchain network can
be seen before they are included in a block. Since
all transactions can be seen beforehand, in a decen-
tralized exchange, if a buy order is placed and before
it is put in a block another participant places a buy
order with a higher gas price, it is run before the
original participant. Thus, the participant deals with

4



higher fees in terms of a spread. The main concept
is about reaction time, if you can react faster than
other opponents in the market, you have an informa-
tion advantage and with a speed advantage, you can
get better deals on your orders than others.
This type of attack is not only present in the
blockchain but presenting in centralized financial
markets as well. For example, in centralized markets,
market makers or high-frequency trading firms may
attack other participants in the exchange because of
their speed advantage.
The primary solution to such an attack is to remove
incentives from specific ordering. Have all the orders
in a batch and thus the attacker would gain no advan-
tage when executing their transaction before another
participant.

6.3 Integer Overflow

Integers and other data types all have to be stored
in memory. However, memory in a system is finite
and numbers theoretically can be infinite. Integer
overflow is when an integer does not fit the memory
space that it is assigned to. Integers in solidity are
256 bits. Numbers exceeding this limit are subject
to integer overflow. Numbers less than this limit are
subject to integer underflow. In normal systems, in-
teger overflow may lead to buffer overflow to which an
attack can gain shell access. Furthermore, a negative
balance may become a positive balance depending on
the implementation of the system.
In the Ethereum protocol once the limit is reached,
the smart contract restarts and goes back to 0. De-
velopers should be aware of this and build systems
that complement solidity implementation. Protect-
ing yourself from such an attack is just the matter of
writing code that is not subject to such attacks by
placing limits and understanding how the language
you are writing in handles such errors.

6.4 Reliance on External Data

Although the decentralization of a blockchain is one
of the most important elements that attract partici-
pants, some applications rely on external data. Most
external data is stored in centralized solutions, mak-
ing it very exploitable when routed to the decentral-
ized blockchain. The data itself may be incorrect or
the centralized entity may be compromised or of ill
intention. If one of the cases is true, the data once
routed to the blockchain is malicious and participants
are not aware of this.
One of the best solutions to such a problem is using
a decentralized routing mechanism. A decentralized
routing mechanism statistically downplays the risk
of an attack from a centralized entity. Since the data
from the centralized entity is not decentralized, the
decentralized blockchain will have no problem accept-
ing it and ensuring the information is correct. Chain-
link is the lead provider in decentralized routing.

7 Conclusion

In this paper, we explored exploits that are common
on the infrastructure level of the blockchain and the
smart contract level of the blockchain. The infras-
tructure level can be viewed as layer 0 and the smart
contract level as layer 1. Common layer 0 attacks
include Sybil attacks and denial of service attacks.
Sybil attacks take advantage of the consensus mech-
anism in the blockchain while denial of service at-
tacks take advantage of poorly written validator code.
Furthermore, a subset of surface-level attacks is so-
cial engineering attacks in which the participants of
the blockchain can have their funds stolen by ma-
licious attackers that promise financial returns. Fi-
nally, I explored smart contract attacks which are
errors made by developers that build on top of the
blockchain (layer 1). Smart contract exploits usually
exploit poorly written functions and because of the
ability of the smart contract for multiple calls, smart
contract exploits can be very large.

5



References

[1] What is blockchain security?

[2] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized application platform.,
2014.

[3] Andrew Lewis-Pye and Tim Roughgarden. How does blockchain security dictate blockchain implemen-
tation?, Nov 2021.

[4] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Nov 2008.

[5] Gavin Wood. Ethereum: A secure decentralized generalised transaction ledger, 2022.

[6] Anatoly Yakovenko. Solana: A new architecture for a high performance blockchain, 2018.

[7] Rui Zhang, Rui Xue, and Ling Liu. Security and privacy on blockchain, Aug 2019.

[2] [1] [3] [4] [5] [6] [7]

6


