Parallel Execution of Smart Contracts on Blockchains
Without Compromise of Security and Decentralization

Mustafa Aljadery
Independent Researcher

Abstract

Currently, most blockchains run on web-
assembly-based run time and can only han-
dle one change to the state at a time. Al-
though novel ideas have been presented con-
cerning Byzantine Fault Tolerance consensus
in the past couple of years, a new limit to trans-
action output has presented itself in the form
of execution limitations. The EVM (Ethereum
Virtual Machine), the most commonly used ex-
ecution mechanism for blockchains currently,
can only modify the blockchain one contract at
a time. A possible solution to the bottleneck
that is presented with this execution environ-
ment is the execution of contracts in parallel.
In this report, I am going to discuss in de-
tail the most common execution mechanisms
of blockchains, currently, and describe possi-
ble solutions to the limitation of transaction
execution. Instead of the single-threaded web-
assembly-based EVM, this report is going to
highlight multi-threaded solutions.

1 Introduction

A smart contract can be viewed as a digital contract
between two parties that in the event of a conflict,
a result is reached by the contents of the smart con-
tracts. Smart contracts have no central authority and
live in the blockchain. Typically they are used so that
all participants can be immediately certain of an out-
come. They can be thought of as simple conditional
statements that are immutable.

Proposed changes to a fundamental feature in a
blockchain fall under the back-testing of three fun-
damental principles of a decentralized blockchain. A
decentralized blockchain is secure, scalable, and de-

mustafa@mustafaaljadery.com

centralized. Security was the major challenge for the
first implementations of a distributed ledger and the
main breakthrough was the use of a consensus mecha-
nism. Security is the integrity of the ledger. A ledger
must be able to withstand attacks from malicious ac-
tors without compromise. Decentralization gives all
users of the blockchains the ability to access and mod-
ify data in the blockchain without censorship resis-
tance. Finally, scalability refers to the feature that a
ledger should optimize for the throughput of trans-
actions. In this report as we propose a solution for
scaling the execution of smart contracts, we keep in
mind that a solution must also not compromise the
decentralization or security of the blockchain.
Although the numerous proposed scaling arguments
in the upgraded version of Ethereum (ETH 2.0), ETH
2.0 does not optimize the EVM but rather optimizes
the implementation. In ETH 2.0, it is proposed that
the EVM will move to eWASM. Web-assembly re-
moves Ethereum’s dependence on recompiled smart
contracts, thus giving developers the flexibility to de-
velop code in multiple programming languages that
execute with better speed. However, the improve-
ment of speed is not a function of better optimization
of the execution of the smart contracts, but rather a
function of the change from native javascript to the
compiled WASM code. Transactions are still pro-
cessed sequentially, slowing down the system.

A sequential execution model for smart contracts
is the main bottleneck for smart contracts on most
blockchains. A sequential model may be viewed as
the only model since it ensures the blockchain state
is not modified maliciously by multiple parties con-
currently. However, with the proper security and op-
timization of multiple cores on a validator, parallel
execution can increase the throughput of contract op-
timization by a large factor.

This paper is only going to discuss briefly the impli-



cation of such a solution to the execution layer on
layer 2 scaling. Layer 2 scaling is scaling above the
original protocol of the blockchain where transactions
are processed on additional chains and the results are
posted on the original chain. Although concurrency
techniques can significantly increase the throughput
of multiple execution mechanisms on layer 2 scaling
solutions, this paper is going to focus directly on the
execution layer of the problem (layer 1).

2 Background

On the highest level, a blockchain is just a distributed
database. All nodes of the database are sharded
among different participants and those participants
could modify and access the information. The key
difference between a blockchain and another shared
database is how the information is structured. In a
blockchain, the primary data structure is a block and
a block can only hold a certain amount of informa-
tion. Once this limit has been reached, the block
is closed and connected to the previous block. In-
herently, a blockchain by itself is not secure enough
to hold financial transactions. A consensus mecha-
nism, in addition to other secure algorithms, is what
provides the blockchain with the necessary security
against attacks.

Ethereum is a decentralized distributed ledger whose
goal is to give its users more control of their data. The
main addition of Ethereum, compared to the origi-
nal distribute ledger Bitcoin, is the concept of smart
contracts. A smart contract is a program that gov-
erns the behavior of accounts within the Ethereum
blockchain. Currently, the primary way to interact
with the blockchain is through the object-oriented
language solidity. The smart contract itself is a self-
executing an agreement that is reached between the
parties through the lines of code that are written in
the contract. Smart contracts are also immutable,
they cannot be changed once they have been deployed
on-chain. The function of a protocol is to give the
users access to that data. The protocol must ver-
ify that the smart contract is present. Protocols also
provide the feature that smart contracts are permis-
sionless. Anyone can write solidity code and deploy
it as a smart contract on the Ethereum blockchain.
When optimizing for scaling, many inherent parts of
the distributed ledger may be optimized. A more effi-
cient consensus mechanism may achieve the speed of
over 100x the current Nakamoto Consensus used in
the Ethereum protocol. The consensus I argue is the
most important part of any of the protocols. With-
out consensus, your security and decentralization are

compromised and with an inefficient consensus mech-
anism, the protocol’s scaling is inefficient. In this pa-
per I am mostly going to focus on scaling in terms of
the execution of smart contracts, however, the under-
standing consensus is fundamental to understanding
optimization in the core security aspect of any pro-
tocol.

The environment in which smart contracts are ran
is subject to the best optimizations, as that is the
home of execution. The Ethereum virtual machine
(EVM) only operates on 256 bit integers. The main
limit is there to limit the gas used of a transaction on
the blockchain. Gas which is calculated in the native
currency of ether is the fees a user of the blockchain
must pay to interact with the blockchain. Optimiza-
tions in the JIT-EVM not only reduce execution time
but lower gas for users of the blockchain. On an outer
level, this attracts more users to the blockchain.
The fundamental concept of concurrency is present
in the execution of smart contracts on the Ethereum
blockchain, however, it is by no means optimized.
Any execution of a smart contract must be done by
all participating nodes in the protocol. This execu-
tion is done in parallel, as a synchronous execution
of a contract on all of the participating nodes would
intensely slow down the system and not achieve any
benefit. The additional optimizer in this model is
the parallel execution of smart contracts within each
node. Currently, each node, although being multi-
core, can only handle one execution of a smart con-
tract at a time. The proposed methods in this paper
indicate that if each node executes smart contracts
in parallel, a greater output in terms of execution
speed can be reached than a synchronous execution
approach.

3 Brief History of Consensus

Consensus is how voters in the blockchain agree on
a decision. This ensures that the network state is
synchronized. Consensus is what keeps the network
safe from malicious attackers. A malicious attacker
must take control of the majority of the network for
most networks in order to manipulate funds in the
distributed ledger.

Consensus is part of the blockchain trilemma. It pro-
vides security for the blockchain. No one can steal the
funds of the participants in the blockchain. Moreover,
many researchers in the past couple of years have
looked at optimizing consensus for scalability. The
simple idea is that if consensus is reached quicker,
the blockchain would be able to processes more data.
Before the bitcoin white paper, classical consensus,



more commonly known as Practical Byzantine Fault
Tolerance, was based on an all-to-all voting mecha-
nism. A leader must initiate a process for the vot-
ing and other participants continue the voting until
consensus is reached. Such a consensus protocol is
inefficient which regards the desired scalability of a
blockchain. Each node has an n? overhead.

The Nakamoto Consensus was the next novel im-
provement to the landscape of consensus. Byzantine
Fault Tolerant systems all relied on a leader and if
the leader acted maliciously, it would be difficult for
the other members of the system to reverse the ma-
licious actions. The Nakamoto consensus algorithm
removed the leader in the Byzantine Generals Prob-
lem. Consensus is reached without a leader. This is
the proof-of-work mechanism. For the users to have
a trustless, decentralized network, nodes must con-
tribute their computational power.

The newest consensus algorithm that rivals the
Nakamoto Consensus algorithm was published by an
anonymous pseudonym called Team Rocket. It pro-
poses the ideas of leaderless Byzantine Fault Toler-
ance through metastability. In this type of consen-
sus, random sub-sampling is used to reach consen-
sus. The advantages of such a consensus algorithm
for a blockchain are low latency, high throughput,
and resilience to a majority attack. In the Nakamoto
consensus proof-of-work and the proof-of-stake con-
sensus, the voting power of 51 percent of the net-
work would be sufficient to gain the advantage of
the network. However, in the metastability, random
sub-sampling approach, an attacker could only com-
promise the system if and only if the attacker owns
80 percent of the network. Through this consensus,
irreversible finality can be reached in sub-two sec-
onds. Many times faster than traditional proof-of-
work consensus, without compromising the security
of the blockchain.

Scaling in the consensus layer improves the trans-
action per output in terms of block finality rate.
Such improvements are fundamental to scaling the
blockchain. Before optimizing for execution in smart
contracts, optimizing for the best consensus method
provides larger scaling for the blockchain.

4 Scheduler Implementation

Many of the current blockchains track account
through a local key-value-based storage. A problem
with such a mechanism for storing the data of many
accounts in a blockchain is that it does not optimize
for speed. A read and write to the state has to be
processed sequentially. If the state is organized such

that the read and the write can be done concurrently,
scaling of the system can reach many times its cur-
rent throughput.

A key solution to this problem is scheduler imple-
mentations. Scheduler implementations support any
number of tasks, up to which the system can han-
dle, and each task has an attached priority. Further-
more, if the call to the blockchain specifies exactly
whether the actions of the call are a read or write
function, the virtual machine can prepare the neces-
sary resources concurrently. Such an implementation
would significantly speed up execution as instead of
the virtual machine processing transactions one after
the other, non-conflicting transactions can be bun-
dled. Through this implementation not only will each
contract be processed in parallel between the valida-
tors, but each contract will be processed in parallel
in every single validator.

An implementation of a scheduler will have the vir-
tual machine follow two rules: 1) Each of the incom-
ing transactions is sorted for instances of dependent
transactions. 2) Each non-dependent transaction is
scheduled and executed in parallel.

sort + schedule

SN

o .

time slot 2

\ y
]
]

4.1 Validators

The main optimization that can be done here is the
validators themselves. Through the use of CPU’s and



GPU’s, the inputs can be sorted so that they can be
concurrently executed on-chain. If the instructions
that are called to the sorter before the execution on
a chain all call the same usage, then all of the trans-
actions can be executed on different cores of the val-
idators. If the block size and the requirements of
validators are not important, a GPU would be able
to sort through the data as fast as possible. However,
adding requirements to validators decreases the level
of decentralization when looking at the blockchain
trilemma. GPUs are not necessary for concurrency
but they can play a big role in quicker sorted data.

4.2 Limitations

This approach is very useful, however, you can not
process overlapping transactions in parallel because
one modifies the state and then consequent trans-
action(s) rely on the modified state. Nevertheless,
transactions that do not rely on the state of the other
are perfect examples of a use case for such an imple-
mentation.

4.3 The Perfect Implementation

The perfect implementation of such a system is to dis-
tribute overlapping transactions to different shards.
This system only works in a sharded blockchain.
ETH 2.0 is a perfect example of a blockchain in
which this system would produce computation many
times the current Ethereum output. Sharding splits
a database (in our use case a blockchain) horizon-
tally into different shards that all work to handle
the load of the database. Such horizontal scaling in-
creases the transactions per second of the blockchain
as the network is democratically split into different
shards. ETH 2.0 proposed a blockchain with 64 dif-
ferent shards all working in parallel to handle the con-
gestion of the network. If instructions are organized
so that transactions may execute without overlapping
in different shards of the blockchain, there would not
be a conflict of state and output would be equivalent
to the increase of the shards.

4.4 Miscellaneous

ETH 2.0 is not a forward scaling blockchain. A for-
ward scaling blockchain is one where an increase in
the number of validators would increase the scalabil-
ity of the blockchain without the compromise of the
other two parts of the blockchain trilemma. Such par-
allel scaling would make Ethereum dynamically scal-
able. Furthermore, a common understanding that the

validators themselves must have more cores. Think-
ing about the blockchain trilemma, this would lower
the decentralization because then you would require
validators with more cores. This would yield the
biggest scalability but compromises decentralization.
If we only refer to the validator specifications released
by the Ethereum organization for an ETH 2.0 node,
a processor must be quad-core and the current model
can only use a single core at a time. An implementa-
tion of a scheduler would take advantage of the other
three cores in the validator.

5 Lock-Based Concurrent Data
Structure

A lock-based concurrent data structure is a data
structure that can be modified by several threads
in parallel. This idea is first presented and most
commonly used in the Linux Kernel. The sloppy
counter in the Linux kernel is used as a way for speed-
ing up increment and decrement operations that are
used by a shared variable. A sloppy counter instead
of incrementing the global counter increments a lo-
cal counter. Periodically, the local counter transfers
the value of the local counter to the global counter.
This is very useful in concurrent, multi-threaded sys-
tems as each thread can be implementing another
counter. Multiple counters run in parallel and up-
date the global state periodically. The sloppiness of
the counter is how often the local-to-global transfer
is occurring. In terms of optimization, the bigger the
sloppiness, the more scalable the counter. The less
the sloppiness, the more the counter acts as a syn-
chronous system. Two big disadvantages of a scal-
able distributed system that utilizes sloppy counters
are the speed of the real value and the accuracy of the
global value at any given time. At any given time,
especially if the sloppiness of the counter is large, you
are subject to the global value not being up to date
by the increments of the local values as they have not
synchronized yet. This is a sacrifice in the accuracy
of the data. Adding locks to the data structure will
keep it thread-safe. Locks are present for each local
counter and one for the global counter.

On another note about the speed of execution of
smart contracts, smart contracts for inherit applica-
tions can experience slow down not from the virtual
machine execution of the smart contract but poorly
written smart contract code. Unoptimized smart con-
tract code may cause delays greater than what can
be optimized in a parallel system as dependencies on
the state may be increased in which a parallel system
would not be applicable as most of the calls will be



dependent on the state.

5.1 Parallel Executing Counters in

Validators

When defining the behavior of a smart contract, there
are two types of executing functions: read and write.
If two write states are in the same block, then they
cannot be run in parallel as they are dependent. You
can’t have two transactions in the block that both
modify the state tree. The scheduled implementer
was a solution to this problem as those that write the
state and are in the same block are not executed at
the same time they are synchronized, but the transac-
tions that don’t write the same state in the block can
be executed asynchronously. An even better idea is
to use different storage mechanisms. If you split the
network into multiple local counters and large global
counters, you can execute conflicting functions in the
local counters and pass them into the global counter
using a sloppiness function. The different storage en-
tities would not have any conflict executing multiple
states writes as they are independent.

This idea is very similar to sharding. ETH 2.0 pro-
poses to split up the blockchain into 64 different
shards and the shards are fundamental complete pro-
tocols. They implement their state and then write
back to the global beacon chain. If the storage for the
smart contracts was split into 4 different sub-storages
and then each with their executing state, conflicting
functions in terms of state modifiers, will be sent to
different storage.

To view the actual state and execute a read on
the blockchain, all values of the sub-storages (sub-
counters in the example that I used) will have to be
accessed. This makes the sloppiness dynamic. The
sloppy counters that I defined above have a state
timeout to when they execute back to the global
counter, however, when implemented in the aspect
of smart contracts, two functions are possible, a read
and a write function. We can partition the write func-
tions, but in terms of the read function, blockchains
must get the accurate state or the network may be
compromised. All local storage must send back in-
formation to the global storage to get accurate in-
formation. The speed of such an adjustment to the
blockchain relies on the number of reading inputs.
The more read inputs the lower the sloppiness in the
sloppy counterexample. The slower the run time as
it becomes more of synchronous execution.

write read write

sort

time slot 1

time slot 2

5.2 Limitation to the Approach

As highlighted in the previous subsection, the num-
ber one issue with a lock-based storage approach is
the sloppiness of the system. The lower the slopiness
of the system the more synchronized the execution
of the contracts is. Read execution overhead may
cause more synchronization, but it is always at least
as good as the synchronized solution or better. In an
environment was minimal read executions, the solu-
tion is many times faster than the current state of
the art. In a situation with many dependent read
executions, it is never slower than the synchronized
approach. This is also true with the scheduled execu-
tion approach. It is never worse than a synchronized
approach but has the upside potential of speeds mul-
tiple times the current approach.

6 Relevance

An increase in the output of smart contracts not only
attracts more users to a decentralized blockchain as
the costs of executing a transaction are lower, but it
also speeds up the system for more use cases. The
largest payment processor visa for example can pro-
cess 65 thousand transactions per second, while the
cap for the current Ethereum implementation is 15



transactions per second. A faster Ethereum would
yield more external applications for blockchain pro-
tocols. Furthermore, it a more scalable. Scalablity
of the blockchain itself can come from many differ-
ent avenues including consensus algorithm scaling,
distributed ledger technology scaling, and off-chain
scaling. In this report, I chose to focus on latency
scaling, and identified different parallel solutions to
solve the problem without compromising security or
decentralization.

7 Conclusion

The fundamental aspects of what provides value in
a blockchain lie in the trilemma of security, decen-
tralization, and scalability. Security is what keeps
the assets in the blockchain safe for all users. Decen-
tralization remove a central authority as is the main
idea of the Nakamoto Consensus which started the
movement of decentralized blockchains. Scalability
can be viewed as the user interface of a blockchain.
The faster the blockchain, the more applications that
can live in the blockchain and the more adoption it
will have. Furthermore, a more scalable blockchain
is one where the barrier to entry is very low as the
gas fee is very low and that itself is decentralization.
The trilemma is very connected and optimizing for
all aspects without compromise makes a better over-
all decentralized blockchain.

Smart Contracts, which were proposed by Nick Sz-
abo, are digital contracts that are stored on the
blockchain. The contracts automate an agreement
between two parties. The current technology of smart
contracts in the Ethereum blockchain does not allow
the execution of multiple contracts and thus slow-
ing down the blockchain. In this paper, I proposed
two approaches that optimize the speed of execution
of smart contracts by taking advantage of the mul-
tiple threads in the validators to concurrently verify
contracts. In the first approach, I identified a sys-
tem that requires a time-based element in which the
requests are sorted. The sorter, before the execu-
tion of the contracts, identifies the different types of
smart contracts required and sorts them to whichever
ones are not dependent on each other. The ones that
are not dependent on each other are then executed
in parallel, while dependent ones follow the old syn-
chronous structure. Finally, a concept taken from the
Linux kernel known as sloppy counters can be used
to further speed up the blockchain. If validators cre-
ate temporary state storage and then the global state
is updated in each read function to the protocol, all
write functions may be executed in parallel. Statis-
tical analysis can be done on each of the methods
proposed as a means of past usage of the blockchain,
which can determine which method is complementary
for the fastest user experience on any decentralized
blockchain.



References

Cloud spanner: Truetime and external consistency nbsp;—nbsp; google cloud.

Mustafa Al-Bassam. Lazyledger: A distributed data availability ledger with client-side smart contracts,
Jun 2019.

Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud and data availability proofs: Max-
imising light client security and scaling blockchains with dishonest majorities, May 2019.

Silas Boyd-Wickizer. An analysis of linux scalability to many cores.

Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized application platform.,
2014.

Christophe Cerin. Methods for partitioning data to improve parallel execution time for sorting on
heterogeneous clusters.

Alaa Ismail El-Nashar. To parallelize or not to parallelize, speed up issue, 2011.

David K Gifford. Information storage in a cecentralized computer system, 1981.

Jae Kwon. Tendermint: Consensus without minting, 2014.

Barbara Liskov. Practical uses of synchronized clocks in distributed systems.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, Oct 2008.

Fernando Pedone. Solving agreement problems with weak ordering oracles.

Dr.Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2022.

Anatoly Yakovenko. Solana: A new architecture for a high performance blockchain, Nov 2017.

[2] 3] [4] [5] (6] [7] [8] (1] [9] [10] [11] [12] [13] [14]



